Методы решения тригонометрических уравнений

Решение тригонометрических уравнений разложением на множители.

Метод разложения на множители заключается в следующем: если

То всякое решение уравнения
(1)
Является решением совокупности уравнений
(2)
Обратное утверждение, неверно: не всякое решение совокупности уравнений (2) является решением уравнения (1). Это объясняется тем, что решения отдельных уравнений (2) могут не входить в область определения функции .
Поэтому, если при решении тригонометрического уравнения методом разложения на множители, функции, входящие в уравнение, определены не для всех значений аргумента, после нахождения решения должна быть сделана проверка, чтобы исключить лишние корни. Можно поступать другим способом: находить область допустимых значений исходного уравнения и выбирать только те корни, которые входят в найденную область допустимых значений.

Пример 1. Решить уравнение
Пример 2. Решить уравнение
Примеры для самостоятельного решения:

Решение тригонометрических уравнений, сводящихся к квадратным.

При решении уравнений указанного типа в основном применяются следующие тригонометрические тождества:


Пример 1. Решить уравнение
Пример 2. Решить уравнение
Примеры для самостоятельного решения:

Решение однородных уравнений.

Уравнение вида

(1)
где – действительные числа, называются однородными уравнениями степени относительно функций и .
К квадратичным уравнениям вида (1) приводятся уравнения вида
(2)
при этом следует применить формулы синуса и косинуса двойного угла

,
а также тождество
Общий подход к решению однородных уравнений основан на том, что корни уравнений или не являются корнями уравнения (1), так как, если, например, , то из уравнения (1) следует, что и , что противоречит основному тригонометрическому тождеству . Следовательно, левую и правую части уравнения (1) можно разделить на и ввести подстановку
Пример 1. Решить уравнение
Пример 1. Решить уравнение
Примеры для самостоятельного решения:

Решение уравнений с помощью введения вспомогательного аргумента.

Рассмотрим уравнение
(1)
Разделим левую и правую часть уравнения (1) на :
Так как
то существует угол φ такой, что
при этом
Тогда уравнение (1) примет вид
Отметим, что к выбору угла φ в задачах с параметрами нужно относиться внимательно: выбор и выбор будут не всегда равносильны.
Пример 1. Решить уравнение
Пример 2. Решить уравнение
Примеры для самостоятельного решения:

Решение уравнений с применением формул понижения степени.

При решении широкого круга тригонометрических уравнений ключевую роль играют формулы понижения степени

Пример 1. Решить уравнение
Пример 2. Решить уравнение
Примеры для самостоятельного решения:

Решение уравнений с применением формул тройного аргумента.

При решении ряда уравнений наряду с другими существенную роль играют формулы
(1)
(2)
Пример 1. Решить уравнение
Пример 2. Решить уравнение
Примеры для самостоятельного решения:

Решение уравнений методом универсальной подстановки.

Тригонометрическое уравнение вида
(1)
где R – рациональная функция, , с помощью тригонометрических формул двойного и тройного аргумента, а также формул сложения можно свести к рациональному уравнению относительно аргументов после чего уравнение (1) может быть сведено к рациональному уравнению относительно с помощью формул универсальной тригонометрической подстановки

(2)
Следует отметить, что применение формул может приводить к сужению ОДЗ исходного уравнения, поскольку не определен в точках , поэтому в таких случаях нужно проверять, являются ли углы корнями исходного уравнения.
Пример 1. Решить уравнение
Пример 2. Решить уравнение
Примеры для самостоятельного решения:

Решение тригонометрических уравнений, содержащих знак модуля или знак корня.

Специфика тригонометрических уравнений, содержащих знак модуля или знак корня, состоит в том, что они сводятся к смешанным системам, где кроме уравнений нужно решать тригонометрические неравенства и из решений уравнений выбирать лишь те, которые удовлетворяют неравенствам.
Пример 1. Решить уравнение
Пример 2. Решить уравнение
Примеры для самостоятельного решения:

Использование ограниченности функций при решении тригонометрических уравнений.

При решении некоторых тригонометрических уравнений часто используется свойство ограниченности функций и , то есть следующие неравенства: , , .
Пример 1. Решить уравнение
Пример 2. Решить уравнение
Примеры для самостоятельного решения:

Функциональные методы решения тригонометрических и комбинированных уравнений.

Не всякое уравнение f(x)=g(x) в результате преобразований может быть сведено к уравнению того или иного стандартного вида, для которого существует определенный метод решения. В таких случаях оказывается полезным использовать такие свойства функций f(x) и g(x), как монотонность, ограниченность, четность, периодичность и др. Так, если одна из функций убывает, а вторая возрастает на промежутке X, то при наличии у уравнения f(x)=g(x) корня на этом промежутке, этот корень единственный, и тогда его, например, можно найти подбором. Если, далее, функция f(x) на промежутке X ограничена сверху, причем , а функция g(x) ограничена снизу, причем , то уравнение f(x)=g(x) равносильно системе уравнении . Иногда для решения уравнения f(x)=g(x) можно построить графики функции y=f(x), y=g(x) и определить абсциссы точек пересечения. В этом параграфе также рассматривается применение производной для исследования тригонометрических уравнений.
Пример 1. Решить уравнение
Пример 2. Решить уравнение
Примеры для самостоятельного решения: